JOURNAL OF
Econometrics

Journal of Econometrics 79 (1997) 291-303

Bayes WESML
Posterior inference from choice-based samples

Tony Lancaster

Department of Economics, Box B, Brown University, Providence, RI 02912, USA

Abstract

In this paper I show that the Weighted Exogenous Sampling Likelihood (WESML)
estimator for choice-based samples due to Manski and Lerman (1977) can be given
a Bayesian interpretation under a multinomial model for the data with improper
Dirichlet priors. Bayesian posterior distributions of choice model parameters are com-
puted to study the gains from choice-based sampling and the effect of knowledge of
population marginal choice probabilities.
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0. Introduction and summary

This paper deals with inference from choice-based samples. The problem
arises in the following way. There exists a finite collection of mutually exclusive
choices. The econometrician is prepared to entertain a stochastic model showing
the probability with which an agent makes each choice as a function of an
observed covariate vector, x, which may vary over both choices and agents. This
model, which describes the conditional probability of each choice given the
covariate vector, is specified up to a finite parameter, 8. The familiar logit or
probit models for binary choice are examples of such models. In contrast, the
distribution of the covariates, x, is unknown to the investigator.
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Data — observations on the choice, y, and the covariate x — are obtained by
stratifying the population on the basis of the choice each member made, and
then taking random samples of predetermined sizes from each choice stratum.
This is what econometricians call choice-based sampling. A particular case is
that in which the strata correspond to the choices and we call this pure
choice-based sampling. With just two choices pure choice-based sampling
amounts to taking a random sample of size N, from those members of the
population who made choice 1, and then taking a random sample of size N,
from those who made choice 0.

The sampling scheme, usually implicit, in textbook discussions of regression
estimation is one of random sampling from the whole population, or possibly
random sampling from within strata defined by the covariates or other
exogenous variables. Under such schemes the distribution of the covariate
enters the likelihood function multiplicatively and can be ignored so far as
inference about 6 is concerned. But under choice-based sampling — and more
generally under any sampling scheme involving random sampling from within
strata defined by the dependent variable of the model of interest — the covariate
distribution does not factor out of the likelihood.! This implies that the inference
problem is semiparametric. The likelihood function involves both an unknown
finite parameter 6 and an unknown function — the distribution of the covariate.

There are many solutions to this difficult inference problem, early work, by
Cosslett among others, being lucidly summarised in Manski and McFadden
(1981), and the most recent contribution provided by Imbens (1992). The most
widely used estimator of 6 was given as long ago as 1977 by Manski and
Lerman.? It involves maximizing a reweighted version of the random or
exogenous sampling likelihood function where the weights depend upon both
the stratum sizes — the N, — and the marginal choice probabilities Q,. These
latter are the fractions of the whole population making each choice. They are
assumed known a priori or consistently estimated from an independent sample.
Given knowledge of the weights the Manski—-Lerman, or Weighted Exogenous
Sampling Maximum Likelihood (WESML) estimator can be calculated using
standard software. The WESML estimator is consistent for 0.

All existing econometric work on the choice-based sampling problem is
written in the classical or frequentist tradition. The present paper offers
a Bayesian approach to the problem. 1 do this not only out of idle curiosity and
ideological conviction but also because, in inference from choice-based samples,
prior information plays a crucial role. This is because ‘knowledge’ of the
marginal choice probabilities is necessary to identification. Such knowledge
cannot come from the choice-based sample — 100 observations of those who

! See, for example, Amemiya (1985) on this point.
2See also Hsieh et al. (1985).
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travel by bus and 100 from those who do not reveals absolutely nothing about
the fraction of the population who travel by bus.> Knowledge of the Q, must
come from outside the sample and it is in handling such extra-sample informa-
tion that a Bayesian approach is particularly straightforward.

The essential points of this paper can be briefly summarised as follows. We
‘solve’ the semiparametric inference problem by postulating multinomial forms
for the distributions of the covariate vector given the choice. The distributions
are supported on L known points with probabilities p,, that are unknown. Since
the choice is also a discrete random variable the full data distribution is then
completely discrete. We then define the parameter 6 of the choice model as
a function of the probabilities in this discrete data distribution — Eq. (2). We form
the likelihood for the probabilities p,,, on the basis of the choice-based sample
and the likelihood for the marginal choice probabilities* g, using independent
auxiliary information. Multiplying by a prior for these probabilities which can,
in particular, incorporate prior information about the Q,, yields the posterior
distribution of all the probabilities appearing in the joint distribution of y and x.
Since 0 is defined by these probabilities this yields a posterior distribution for
6 which is what is required. When the prior distribution for the conditional
probabilities of the covariate given the choice is the improper Dirichlet distribu-
tion their posterior distribution assigns zero posterior probability density to
points of support not realised in the sample. The resulting posterior distribution
for 0 is the Bayesian bootstrap distribution (Rubin, 1981). Its approximate
posterior expectation is the WESML estimator, when the Q, are ‘known’. We
thus achieve a Bayesian interpretation for this estimator and an exact and
readily calculated posterior distribution that can be used for making Bayesian
inferences in the spirit of the WESML procedure. Moreover this distribution
can be calculated whatever the extent of our prior knowledge of the Q,.

We provide a small numerical experiment to study the effect on the posterior
distribution of 0 of varying amounts of prior information about Q, and various
sample designs as measured by the relative magnitude of N, and N,. The formal
development of the posterior is given in Sections 1-3. Section 4 gives the
numerical experiment, and Section 5 concludes with a criticism and some
generalisations.

1. The inference problem

We shall consider binary choice with covariate vector x and choice indicator
y. The vector z =(y, x) is distributed over the relevant population with

* Except that it is neither zero nor one!

* Lower case g refers to the random variable whose true value is Q.
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distribution function P, an element of a set of probability measures II. The
sample space for X is denoted 2. The conditional probability of choice 1 in the
population given X =xeZ is specified up to a finite parameter # as
Pr(y = 1|x, 0) = P,.(0) where 0 € ©, a parameter space.

We assume that 0 is uniformly identifiable relative to (I1, @) so we may write
6 = t(P) where t(*) maps IT onto @ (Manski, 1988). We define 0 as a functional
of P by

0 = argmax. ¢ | y10og Py+(c) + (1 — y)log Po.(c)dP, (1)

where Py =1 — P,. That is, for every Pe I1, 6 maximises the expected log
conditional likelihood. This is a best fit definition of 6 in the sense that this
parameter is defined to be the vector that minimises the Kullback—Liebler or
information theoretic distance between the parameterized model and the true,
but unknown, data distribution.

The right-hand side of (1) is t(P). A probability distribution over 11, if one
could be defined, induces a probability distribution over ®. To get such
a distribution we choose to restrict IT to be the set of multinomial distributions
on 2(L + 1) < oo points of support. Where L is a suitably large number. If L is
sufficiently large this is no practical restriction (Efron, 1982). Under this restric-
tion (1) becomes

0= argmaxcegz Zpyx [legPlx(C) + (1 - y)lOgPOx(C)]a (2)
y x

where p,, = Pr(Y = y, X = x) in the multinomial distribution P € II. The sum-
mations are over y € (0, 1), x € (x°, x*, ..., x%) = Z. We assume that both L and
Z are known a priori. A probability distribution over II then requires only
a distribution over {p,,}, ye(0,1), xe Z.

2. The posterior distribution of {p,. }

Assume data are gathered by pure choice-based sampling in which indepen-
dent random samples of sizes N, are taken from the two subsets of the popula-
tion having Y =y, y €(0,1). Factor p,, as

pyx = px\yqya

where g, = Pr(Y = y), y €(0, 1) are marginal choice probabilities in the popula-
tion. The likelihoods from these random samples are

L =11 vl vy=0.1, 3)

xed

where n,, is the sample number of people making choice y and having X = x.
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Next we assume that an independent, auxiliary, random sample of size N, is
taken from the whole population and only y is observed. This provides the basis
for a posterior distribution for g,. The likelihood function

£,=4147, 4)
where n, is the number of sampled people having Y =y and ny + no = N,.
The total likelihood is the product of (3) and (4). Finally, assume that {p, },

{P«0} and ¢, are independent a priori, the former with the (improper) Dirichlet
distributions

l—l p;l\'la y= O’ 1, (5)
xed

and the latter with the Dirichlet (Beta) distribution
4146, lo. b > —1. (6)

Then {p.}, {P«o}> 41 are independently distributed with Dirichlet distribu-
tions

PP {Pao- g1ldata) oc [T pii™" T plo™"qv " "ao " (7)
xe¥ xed
This posterior distribution assigns zero probability density to points in 2" that
were not observed realized in the sample.’ It follows that neither L nor all
elements of 2 need be specified, a priori, by the investigator. Note that

&(pyldata) = ny /Ny, &(qyldata) =(n, + 1, + D/(Ng+ 1o + 11 +2). (8)

3. The Bayesian bootstrap

The distribution (7) implies a distribution for 8 defined by (2). While it is
possible in principle to deduce the exact posterior distribution of 0 and one
might also, by taking multivariate normal approximations to the joint distribu-
tions of the {p,.} and of g,, calculate an approximation to the posterior
distribution of 8, it is much simpler to sample, repeatedly, from this distribution.
To sample from this distribution take a realization of {p, }, {p.a}, 4: from (7)
and solve for 8. Many repetitions of this procedure provide the posterior

*To elaborate on this point, consider a proper Dirichlet prior for p,,, x € Z, say, with the same
parameter ¢ attached all L probabilities. Then by taking ¢ arbitrarily small the marginal joint
posterior probability density of those p,;; that correspond to values of x contained in 2’ but not
observed in the choice 1 sample can be made arbitrarily close to zero for values of those probabilities
greater than zero.
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distribution of 6. A posterior distribution calculated in this way and using the
prior distributions described in Section 2 is the Bayesian bootstrap distribution,
Rubin (1981).

Since {py1}» {Pxo)> {4y} are independent it suffices to sample separately from
the three Dirichlet distributions that are the components of (7). Rubin describes
a method for sampling from such a distribution of the general form

K
p(myoc [] np 1. 9)

k=1
Let N =Y7& ;n. Draw N —1 Uniform (0,1) variates and order them as
Uy, Uy, ..., un—1. Let {g,} be the gaps defined as g, = uy; gn = Uy — -1,
n=2..,N—1;gy=1—uy_,. Partition the {g,} into K collections, the kth
having n, elements and let P, be the sum of the gaps in the kth collection. Then
(P, ..., Pg)follows the Dirichlet distribution (9). This is the method used in the
calculations reported in Section 5. For example, to generate a sample from the
posterior distribution of p,; we perform this calculation with the {n;} equal to
the frequencies of each distinct value of the covariate realized in the sample of

people who made choice 1, there being K such distinct values.

What is the connection between this calculation and the WESML estimator?
When N, — oc the posterior distribution of g, concentrates on the true mar-
ginal probability, Q,. When this is so and when the {p,,,} are equal to their
posterior expectations, given by (8), the function ¢(P) is

&Z niclog Py.(c) + @ZnoxlogPOx(c)- 9)
Nl x NO X

This is the criterion function that defines the WESML estimator when the Q, are
known. It is a reweighted version of the 8 log likelihood that would arise if the
data were sampled randomly, or with exogenous stratification, the weights being
Q1/N, and Q,/N,.® The WESML estimator, with @, known, thus emerges as
a first-order approximation to the posterior expectation of 8 under the Dirichlet
prior assumptions.

Realizations of the {p,,} correspond approximately, (because the {p,,} are
not generally ratios of integers), to bootstrap samples from the x’s realised in the
two choice-based sub-samples. Thus the Bayesian bootstrap is approximately
the same as a frequentist boot-strap for the WESML estimator when the
marginal probability is known. The Bayesian procedure readily allows the
incorporation of prior beliefs about the population marginal choice probabil-
ity.”

® Under random sampling N; ~ N@, and N, ~ NQ, and the weights are equal.

" The WESML procedure has been extended to allow to for uncertain prior information about the
marginal probabilities in Hsieh et al. (1985).
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4. An application

In this Section I use the Bayesian bootstrap to explore some aspects of the
design of a choice-based sample. I assume a Probit model P,.(68) = (8, + 6,x)
for x scalar. I chose 8, = — 2, 8; =1 and let the support of X be 9 points
equally spaced from — 2 to 2. The distribution of X is symmetric and unimodal
on this set. The implied marginal probability of choice 1 is Q; = 0.08 so the
event is rare, a circumstance in which use of choice-based sampling might be
reasonable. The experiments proceed by drawing a sample from the population
described by the above distribution of X and conditional choice probability
model according to the specified sampling scheme and then calculating the
posterior distribution of the &’s given the data thus drawn.

Experiment 1. In this experiment I study the effect of varying precision of
knowledge of @, in combination with a small, balanced, choice-based sample in
which N; = Ny = 20.

I compare the case N, = 1000 which corresponds to rather precise® know-
ledge of Q; with the case N, = 0. In both instances [, = [, = 0 so that N, =0
implies a uniform prior distribution of g, on the unit interval. In frequentist
terms, when Q, is unknown, which presumably corresponds to N, = 0 and I,
l; = —1, then the intercept in the choice model is identified only by functional
form. In particular, had the choice model been logit rather than probit, the
intercept would have been unidentifiable from this particular choice-based
sample design. Any positive posterior precision for 6, when N, =0 will be
a consequence of (a) the flat prior and (b) the non-linearity of the choice model
log odds as a function of x, i.e. the departure from logit form.

The results are displayed in Figs. 1a and b.® The first row in each figure refers
to the case N, = 1000 and the second to N, = 0. For both sets of calculations the
n,, were identical so the only difference between the rows lies in the amount of
information about Q,.

Fig. la tells us that the effect of (almost) knowing the population marginal
probability is to improve dramatically the precision with which we can know the
probit intercept, though it also skews the posterior distribution. Fig. 1(b) tells us
that knowledge of the marginal probability has little effect on the precision of
the slope, though it again introduces some non-Normality.

Experiment 2. In this experiment we compare the precision obtainable with
a balanced choice-based sample to that to be found from a sample whose

8 The posterior standard deviation of g; is 0.009.
° All density plots have been smoothed. The graphics were prepared using SPlus.
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frequencies mimic random sampling in that the frequency of choice 1 observat-
tions is the same as it is in the population. The purpose of the calculation is to
assess the gain from balanced choice-based sampling.

The total sample size is 1000. In the balanced choice-based sample there are
500 observations from each choice. In the ‘random’ sample the fraction of choice
1 observations is equal to the marginal choice probability in the population,
namely 0.08. So the sample sizes are 80 and 920. In both sets of calculations
N = 1000 so that the population marginal probability is known rather precise-
ly. The results are shown in Fig. 2a, which refers to the intercept, and in Fig. 2b,
which refers to the slope. The first rows give the balanced case and the second
rows the ‘random’ sampling case.

Fig. 2a shows the gain in precision and in nearness to Normality of the
posterior distribution of the intercept due to the balanced design. The reduction
in inter-quartile range is about 25%. Fig. 2b shows very similar effects for the
slope.

Fig. 3 shows the joint distributions of slope and intercept in the various
experiments. It appears that knowledge of Q induces a marked negative correla-
tion between slope and intercept. The effect seems strongest when the sample is
small or large but unbalanced.

The results described above have the usual drawback of monte carlo work
that they refer only to one particular experimental set-up. In addition they also
refer to only a small number of sample realisations. We have replicated the
calculations for alternative samples from the same model and found no reason
to think the figures given are untypical. Alternative models would have different
population x distributions, different values of 8 and could of course have more
than one covariate. They could also involve more flexible parametric forms than
the probit. Bayesian bootstrapping such alternative models presents no diffi-
culty other than that presented by repeated calculation of the WESML es-
timator. Such calculations might well be desirable for investigators proposing to
design a survey in that they should provide insight into the likely posterior
precision afforded by alternative designs.

5. Concluding remarks
5.1. Design

Our results suggest that knowledge of the marginal choice probabilities
largely affects the precision with which the intercept in the choice model can be
estimated and has little value for estimating the covariate effects. Precise know-
ledge of the marginal probability seems to introduce severe non-Normality into
the posterior distributions except for large and balanced samples suggesting that
large sample normal approximations need to be applied with caution.
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When the marginal choice probability is small the gain from a balanced
sample — which is not necessarily the optimal design — as compared to a random
sample can be of the order of a 30% reduction in the posterior standard
deviation. For marginal probabilities smaller than 0.08 the gain is presumably
greater.

It should be emphasised that these conclusions refer only to binary choice and
to the probit model. Multinomial choice and/or models other than probit might
lead to other conclusions.

5.2. Criticism and extensions

The Bayesian bootstrap does depend on the improper prior (5) without which
it would be necessary to specify the support of the covariate distribution. This is
the Bayesian counterpart of the standard criticism of the frequentist bootstrap
that it essentially supposes the support of the data to be that which is observed
in sample.'® The Bayesian boot-strap, because of its dependence on the

' Rubin provides a fuller criticism of both the Bayesian and the standard bootstrap.
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improper Dirichlet prior, cannot be regarded as a fully satisfactory inference
procedure. Nevertheless, because of the ease with which it allows the investiga-
tor to incorporate the widely available, and essential, prior information about
marginal choice probabilities, it is an appealing, if flawed, solution to the
problem of Bayesian inference from choice-based samples.

The method described above extends to models with more than two choices
and to any sampling design stratified on the choice set. It also extends to
situations that do not fall strictly within the choice-based sampling framework.
An example of this is the so-called contaminated sampling set-up in which the
investigator has two random samples, one from the people who made choice
1 and the other from the whole population. In the second sample only the
covariate and not the choice is observed. For example, one might have a random
sample of female employees and a random sample of women of working age
with no information on who worked. Since the fraction of women who partici-
pate in the labor force, Q, is a fairly accurately known macroeconomic statistic
this information can be combined with sample data to construct posterior
distributions of the parameters of a model for female labor force participation.!!

An apparent drawback of the Bayesian bootstrap is that it does not let the
investigator incorporate into the inference proper prior beliefs about 6. Ways of
doing this are being addressed in current research.

The method also applies to the analysis of data gathered by random sampling
and gives a way of incorporating prior information about the marginal distribu-
tion of the dependent variable into an analysis. Consider a random sample of
size N from a multinomial population in which p,, is the joint probability of
Y =y and X = x. The likelihood is

< =11r%,
where n,, is the number of observations having Y = y, X = x. Suppose there
exists an independent auxiliary random sample of size N, from the marginal
distribution of Y giving likelihood

L2 = 4140
Now factor p,, as p,,, ¢, and multiply the total likelihood, £, .Z,, by the prior
given by the product of (5) and (6). This gives a posterior distribution of
essentially the same form as (7) and thus leads in the same way to a readily
calculated Bayesian bootstrap posterior distribution for . This is a Bayesian
analog of the procedures described in frequentist terms in Imbens and Lancaster
(1991) in which the marginal information about y is provided by census data and

! Lancaster and Imbens (1992) give a frequentist version of this method.
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the data for likelihood %, represents a conventional microeconomic data set.
The method thus allows the incorporation of macroeconomic data into micro-
economic models.

In many econometric applications of discrete choice modelling, for example,
studies of labor force participation, the investigator will usually have a good
deal of prior information on the marginal frequency of the event in the sampled
population. This should lead to rather precise prior distributions for ¢ which
should in turn lead to tighter posterior distributions for f, though in practice the
gain may be largely confined to the intercept as it was in the example of
Section 4.
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