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Abstract

This paper considers inference about a parametric binary choice model when the data
consist of two distinct samples. The first is a random sample from the people who made
choice 1, say, with all relevant covariates completely observed. The second is a random
sample from the whole population with only the covariates observed. This is called
a contaminated sampling scheme. An example might be where we have a random sample
of female labor force participants and their covariate values and a second random sample
of working age women, with covariates, whose participant status is unknown. We
consider the cases in which the fraction of the population making choice 1 is known and
that in which it is not. For both cases we give semiparametrically efficient procedures for
estimating the choice model parameters.

Key words: Endogenous sampling; Choice-based sampling; Binary choice; Discrete
choice
JEL classification: C13; C14; C25; C21

1. Introduction

There is a significant body of literature in statistics and econometrics dealing
with discrete response models under various types of nonrandom sampling.
Such sampling schemes might reduce the cost of the study, particularly if one of
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the responses is rare. A leading case is case-control, retrospective, choice-based,
or response-based sampling. In the simplest example the researcher has two
samples, one containing observations with response y = 1 (the cases) and the
second containing observations with response y = 0 (the controls). In both
samples we observe the attributes x for all observations. When the model for the
conditional probabilities of the choices given the covariates is of logit form it has
long been known that the investigator can proceed as though the data were
obtained by random sampling so far as estimation of the covariate coefficients is
concerned; see for example Prentice and Pyke (1979). For the general case
Manski and Lerman (1977) proposed a weighted maximum likelihood es-
timator. Cosslett (1981) and Imbens (1992) proposed efficient solutions to the
general estimation problem.

A case that has not received as much attention, and one that is not covered by
the general sampling schemes in Hsieh, Manski, and McFadden (1985) and
Imbens (1992), is that where the second sample is a random sample from the
whole population with only the attributes or covariate values, and not the
responses, observed. The second sample, that formed the control group in
case-control sampling, now consists of an unknown mixture of cases and
controls. Such a situation might occur if the researcher obtains a sample of
observations with a particular response or disease and wishes, possibly for
reasons of economy, to compare them with a random sample from a very
different source in which the particular response was not measured. We describe
this set-up as one of contaminated controls, foilowing the usage of Heckman
and Robb (1984). Neither sample in itself identifies the parameters of the
conditional response probability, but the combination of cases and con-
taminated controls might do so.

This paper deals with efficient estimation of parametric discrete choice models
using samples of this type. In Section 2 we discuss identifiability of choice
models under contaminated sampling and point out that the choice model is
nonparametrically identified if the marginal probabilities of the choices are
known to the investigator. In Section 3 we give an efficient generalized method
of moments (GMM) estimator for the case in which the marginal probabilities
are unknown. The estimator is identical to a constrained maximum likelihood
estimator when the covariates have a multinomial distribution with known
support. In Section 4 we give an efficient GMM estimator for the case in which
the marginal probabilities are known. This estimator is asymptotically equiva-
lent to a constrained maximum likelihood estimator when the covariates are
multinomial. The estimator proposed in Section 3 achieves the semiparametric
efficiency bound as defined by Chamberlain (1987) or Begun et al. (1983). The
problem is semiparametric because of the appearance in the likelihood of the
unknown population covariate distribution.

In Section 5 we discuss the case in which the choice model is logit and the
marginal probabilities are known. This case has been considered by Steinberg
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and Cardell (1992) who have given a consistent estimator of the logit para-
meters. Section 6 reports a small Monte Carlo study of the estimators.

2. The model and its identifiability

Let y be a binary random response variable, equal to 0 or 1, and x a vector of
attributes. In the population the distribution function of x is F(x) which is
unknown. We will assume that the conditional probability of y = 1 given x in
the population 1s equal to Pr(y = 1|x) = P(x; ), where P(-;') is a known
function and § an unknown parameter. Finally, we define g to be the marginal
probability of choice 1 in the population, g = [P(x; B) dF(x).

The sampling scheme is that two independent random samples of sizes
N, and N, are available. The first is drawn from the subset of the population
who made choice 1 and the covariate is observed; the second is drawn from the
whole population with only the covariate observed. We let s denote a binary
stratum indicator, taking the value 1 if an observation is drawn from the
subpopulation who made choice 1, and 0 if it was drawn from the whole
population.

An observation from stratum 1 has probability p(x|y = 1) = P(x) f(x)/q; an
observation from stratum 0 has probability f(x). If we knew these probabilities,
we could determine the function P(x)/q for all values of x with positive prob-
ability. This function is therefore nonparametrically identified. It follows
that the relative probabilities P(x)/P(x,) are identified. This contrasts with
standard case-control sampling which identifies the relative odds,
P(x)/(1 = P(x)) = P(xo) A1 — P(xo).

If q i1s also known, then clearly P(x) is identifiable. Alternatively, if the
parametric form of P(x;f) is known, then f can generally be deduced from
knowledge of the function P(x)/q for a sufficiently large set of values of x. In this
case P(x) is parametrically identifiable. In this paper we shall consider param-
etric models for P(x) with and without prior knowledge of . When ¢ is known,
P(x) is parametrically overidentified.

3. Efficient estimation

In this section we will propose an estimator for the parameters of the
conditional choice probability function P(x;f). This function P(x) will be
assumed known up to a finite parameter vector S and there is no prior
knowledge of the marginal probability g. In Section 4 we shall show how to take
account of prior information such as knowledge of g.

To derive this estimator we will assume initially that the regressors x have
a discrete distribution with unknown probabilities 4, on L + 1 known points of
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support, x". This allows us to use standard maximum likelihood theory, and to
derive an efficient estimator for that case. This estimator does not depend on
either the number or the location of points of support of the covariate distribu-
tion that do not appear in the sample. We then show that this estimator is
asymptotically semiparametrically efficient.

It is convenient, first of all, to enlarge the model. We do this by supposing that
the sample sizes were determined by a sequence of Bernoull trials with un-
known parameter h which is functionally independent of the other parameters
p and 4. Thus the data is provided by repeatedly conducting such trials; if
a success occurs, we randomly sample from the subpopulation who made choice
1; if a failure, we randomly sample from the whole population. This procedure is
repeated N times. The population is assumed sufficiently large that the probabil-
ity of overlap between the sampled individuals is zero. A consequence of this
enlargement is that the sample now constitutes N independently and identically
distribution realisations from the joint distribution of stratum and covariate
g(s, x) = (hPf/q)*(1 — h) f)* ~*. The quantity h will be treated as an unknown
parameter. Its maximum likelihood estimator will be the sample fraction of
observations from stratum 1, N;/N. As long as h is functionally independent of
B, Ni/N is ancillary and the asymptotic distribution of the ML estimator of f is
independent of that of A.

If N = N, + N, is the total number of observations, the log-likelihood 1s

N

+ Nylogh + Nylog(1 — h), 3.1

where f,(1) = f(x,; ) and P, () = P(x,; f). Since L involves # and 4 in a rather
awkward way because of the term in g, it is convenient to reparametrize. The
following transformation changes the log-likelihood into the form that would
arise under a random sampling scheme in which there exists a conditional
distribution and a marginal distribution each depending on distinct sets of
parameters.

Define

(h/q)P(x; B)
(h/g)P(x; B)+1—h’

g(x) = [(h/q)P(x; f) + 1 — h] f(x). (3.2)

R, it the conditional probability that an observation comes from stratum
1 give n the covariate and the sampling scheme. The distribution g(x), which is
also 1wultinomial with parameters n; = [(h/q)P(x'; ) + 1 — h]/, on the same
point of support as f(x), is the covariate distribution induced by the sampling

Ri(x;8,9. h) = Ro=1-Ry,
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scheme. Then L may be rewritten as

N

ﬁ q, h TC Z Sn long(ﬁ. q, h) + (1 - Sn) 10g ROn(ﬁﬂ q, h)]

+ Y logga(n)

= Li(B, g, h) + Ly(m). (3.3)

Formally, we can regard (3.3) as the log-likelihood corresponding to a ran-
dom sample from a population in which the covariate has a multinomial
distribution with probabilities = and the conditional probability of choice 1 is
R, (f, g, h). But (3.3), which is just a rewriting of (3.1), appears to have one more
parameter than (3.1). This is false, of course, because the parameters f, ¢, h, and
7 are subject to the constraint that g = fP(x; p) dF(x; A) which may be rewritten
in terms of the new parametrization as

h = {Ry(x; B, g, ) dG(x; 7). (3.4)

So to maximize this expression we must, in principle, take account of the
constraint (3.4). But in fact the values of f, ¢, h, and = which maximize the
log-likelihood without imposing the constraint do, in fact, satisfy the constraint.
This implies that to compute maximum likelihood estimates of the choice model
parameters all we need to do is to maximize the first component of (3.3). This is
just a random sampling binary choice log-likelihood with choice probabilities
given by (3.2). We now show that this is so by examining the unconstrained
maximum likelihood estimators of 3, g, h, and =.

Let a hat denote an estimator which maximizes L without imposing the
restriction (3.4). Then #; = n;/N for all I, where n; is the sample number of
observations which have covariate value x'. At this solution for z the constraint
(3.4) becomes

N

h=N""Y Ry(B.q.h). (3.5)

n=1

Next consider the f, g, and h likelihood equations from L,:

oL, l , ;
—— =Y Ppalsw — Ruu(B, g, 1)/P, =0, (3.6)
R —
oL, X ,
d = - (l//q) Z (S,, - Rln(ﬁ’ q. h)) = O, (37)
q n=1
oL N
— = (1/h) ) ¥ (o= RunlB g 1) =0, (3.8)

oh
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Here pg, = 0P,/0f of order 1x K, where K is the dimension of § and
h= h(1 — h).

Let § and ¢ solve (3.6) and (3.7) with h = A = N, /N. Then B, ¢, and A solve
(3.6), (3.7), and (3.8), and they also satisfy the constraint (3.5) which may be
written N‘IZ(S,, — Rl,,(ﬁ, 4, h)) = 0. Hence the constrained ML estimator of
B and ¢ can be found by maximising L,(f, g, h) with respect to variation in
B and q. Since L, is just a random sampling binary choice log-likelihood, this is
an essentially simple computation.

The above derivation gives ,3 as a constrained ML estimator after a parameter
transformation. It may also be given a generalized method of moments (GMM)
interpretation.! Consider the generalized moments

l/’l([)” q, ha S, x) = p;i(x7ﬁ)(s - Rl(X; ﬁa q, h))/’/P(X; B)’
YalB. g, by s. x) = — (1/g)(s — Ri(x; 8, g, h)), (3.9)
¥3(B hog,s,x) =q — P(x; B)/[(h/g) P(x; B) + | — h] oc h — Ry (x: 3, g, h)

The moments /4, and i, are the single observation scores for f and ¢ from
the log-likelihood L, (3.3). In the form g — P/[(h/q)P + 1 — h] the moment
Y3 1s just the definitional relation between marginal, g, and conditional, P(x),
choice probabilities after allowing for the fact that the covariate distribution
induced by the sampling scheme is not f(x), but g(x) = f(x)[(h/q)P + 1 — h]. In
the form h — R, the moment ¥ 3 is the single-observation version of the con-
straint (3.4). These moments have mean zero at the true parameter point.
Equating their sample analogues to zero gives f, 4 and h which are then GMM
estimates. Thus the asymptotic distribution of the estimator may be found
equivalently from GMM theory or from constrained ML theory. The former is
rather simpler since we do not have to consider the estimation of n. Moreover
note that these are valid moments whether the distribution of x is discrete or
continuous so they do not hinge on the assumption of a discrete covariate with
known support.

Theorem 1. Let o=(B,q.h) and =0 2 3), where Yy =h—
Ri(x; P, q, h). Under regularity condn:lons the solution, & to Z ,1zp,,(o =0y

a consistent estzmatorfor o* and N N(é — 0%) > .A7(0, V) with

V= r*lA(]*l)-l’ A= (g[w(é)-w(é)/]éiﬁ*’ r= (r[a()ﬁjl

where &[.] denotes expectation taken over the distribution induced by the

!See Hansen (1982) and Manski (1988).



T. Lancaster, G. Imbens/Journal of Econometrics 71 (1996) 145 - 160 151

sampling scheme, g(s, x) = (hPf /q)°((1 — h) f)' 7*, and an asterisk denotes the true
value. The above covariance matrix is the semiparametric efficiency bound of
Chamberlain (1987) or Begun, Hall, Huang, and W ellner (1984).

Proof. See Appendix.

An explicit form for the asymptotic covariance matrix of § and ¢ is as follows.
Let

Ay = Uﬁ(P;i'RPB/PZ), Ay = — (1/(])5([?;31_3/1)),

Az =(1/q*)E(R), A3z =h—&R), (3.10)
which are the nonzero elements of 4. Here R = R (1 — R,) and the expectation
is with respect to g(x), defined in (3.2). Then the limiting covariance matrix of
B, 4 1s

~ 0 0 A Aqs
VB, g)=A4]"' — ) where A, ={ 1! 1‘>,
(h.4) ! <O qz/h> ! (AZI 435

The variance of i is & and it is distributed independently of § and 4.

We see that the covariance matrix of f can be found from the upper left
submatrix of 47 ! which is the inverse information matrix for  and ¢ from L,.
This means that (a) an efficient estimate of 8 can be found by maximizing the
binary choice log-likelihood, L,, with respect to f and g with h replaced by
Ni/N, and (b) the standard inverse information matrix estimate of the B and
g covariance matrix will give the correct standard errors for ff (though not for 4).

4. Efficient estimation with known ¢

Suppose that extra sample information provides the numerical value of the
marginal choice probability, ¢g*. One way of proceding is to maximize the
log-likelihood (3.3) subject to the constraint provided by knowledge of ¢*. The
log-likelihood becomes

N
LB, hym) =} [s,logRin(f, g%, h) + (1 — s,) log Roa(f, g*. h)]
=1

h

N
+ Y logga(m)

n=1
= Ly(p, h) + Ly(n). (4.1)

The constraint relating f, h, and 7 is g* = [P(x; p)dF(x; ), which is equivalent
to

h = [R,(x; B, h)dG(x; ). (4.2)
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Here, Ry = (h/q*)P/[(h/q*)P + 1 — h]. The ML estimator of f, h, and = maxi-
mizes (4.1) subject to (4.2). Unlike the case in which g was unknown, it is no
longer true that the unconstrained ML estimator satisfies the constraint, so this
simplification no longer applies. But a constrained optimization can be avoided
if we adopt a Generalized Method of Moments approach.

Consider the moments  with ¢ replaced g*. These are

lpl(ﬁ’ q*9 h’ S, X) = P:B(X,B)(s - RI(X; ﬂa q*v h))/P(x,ﬁ),
Wz(ﬂ’ q*: h9 S, X) = - (l/q*)(s - Rl(x; ,Ba q*s h))3 (43)
l//3(ﬁa q*a ha S, x) = h - RI(X; .8’ q*’ h)

The covariance matrix of these moments is 4 whose elements were given in
(3.10). Then:

Theorem 2. Let ,=y(B,q* h,s,x,), 01=(8h), 4=EWY), and
I'y = &(0y/0d), where I'y is a submatrix of the r of Theorem I — the column
corresponding to q has been deleted. Finally, let 0, minimize

Z l/jn(él)A’l‘//n(él)'

Then \/N(gl —6F) = A0, V)), where
Vl = [r’llj_lrlj_l.

This covariance matrix is the same as that of the estimator of § and h which
maximizes (4.1) subject to (4.2), under the usual regularity conditions. Thus the
GMM estimator is asymptotically equivalent to the ML estimator and is
efficient when the covariate is discrete with known points of support.
Semiparametric efficiency of § can be proved using the arguments in Imbens
(1992, Thm. 2).

Notice the simplicity of the GMM procedure. It avoids estimation of the
covariate distribution; it avoids a constrained optimization problem; and it is
a procedure that can be applied without any restrictive assumption about the
covariate distribution.

An explicit form for the asymptotic covariance matrix of f§ is?

V(ﬁ) = AL — A7 412045147 450 + (/%) — A2] 142,47 (4.4)

The corresponding expression when g is not known is found from (3.11) to be

V(E) = Afll - A;llAIZ[AZIA;11A21 - Azz]vlﬂndﬂl- (4-5)

2 \/N(ﬂ — h) is distributed independently of § with variance A.
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The feasible form of the estimator will require an initial consistent estimate of
¢ in order to estimate the covariance matrix 4. This might be provided by the
estimator which solves

N
Z l/’l(ﬂs q*a h\’ Sns xn) = 0 (46)

This uses only the first moment, which is the score from the conditional
likelihood of s given x with h replaced by N;/N. It is similar to Manski and
McFaddens’ (1981) conditional maximum likelihood estimator in the standard
case-control or choice-based sampling set up. The asymptotic covariance matrix
of this estimator is

V(Bewr) = A1t — A7 412 [hg* 1™ 4,5, 417 @.7)

This estimator is distributed independently of A. Its inefficiency is revealed by
comparison with (4.4) since 4,, — 4,,47{4,, is nonnegative definite.

5. The logit case

The logit model for P is of interest since it is widely used and there are known
simplifications under this model in standard case-control sampling. The model
is

P(x; ) = 1/(1 + exp{ fo + Pix}).

Under standard case-control sampling the conditional probability of choice
1 given the covariate and the sampling scheme is

Ri(x;B) = 1/(1 + exp{ Bo + log[q(1 — h)/h(1 — @)] + Bix}),

which is the original logit model with intercept displaced. This is the reason why
under standard case-control sampling with a logit model an investigator can
proceed as if the data had been obtained by random sampling so far as inference
about the covariate effects is concerned. But in the present application the
conditional probability of stratum 1 given the covariate and the sampling
scheme is

Ri(x;p) = 1/(1 + [q(1 — h)/h] + exp {Bo + log[q(1 — h)/h] + B\ x}).

This is not a logit model. Thus it would be incorrect for an investigator to
proceed to make inferences about covariate effects as if the data originated in
random sampling.

Steinberg and Cardell (1992) have suggested an estimator for the logit model
when g is known. They propose choosing f§ to maximize

N
Lsc = ). (1 —s,) log(1 — Py(B) + ws,log [P.(B)/(1 — Pu(B)].  (5.1)
n=1
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Here o = ¢g*(1 — A)/h). In this section we shall give an interpretation of the
Steinberg and Cardell (SC) estimator and comment on its properties.® In the
next Section we report some Monte Carlo comparisons of this estimator and the
efficient procedure.

Consider a two-stage estimation procedure. In the first stage, a nonparam-
etric estimate of the population joint distribution of choice and covariate is
constructed. In the second stage, an estimate of f§ is formed by minimizing the
Kullback-Leibler (KL) distance between the nonparametric estimate and a pro-
posed parametric (logit) model. Let (y, x) = f(x) P(x)’[1 — P(x)]* "%, the popu-
lation joint distribution of choice and covariate. The second stage therefore
minimizes

C =Y d(y. x) log [di(y. x)/u(y, x; p)]. (52)

where # is the nonparametric estimate and u(y, x; ) is the parametric model
with a logit form for P(x) depending on the parameter . Dropping terms from
(5.2) which do not involve f it may be written

C =Y P filog P(p) + (1 — P) filog(l — Pi(B))

=Y Jilog(1 — Pi(B) + Pifilog [P(B)/(1 — PiB)]. (5.3)

In this expression, f; = f(x'), P; = P(x'), and a caret indicates the nonparametric
estimate.

Now consider nonparametric estimation of P and f. The log-likelihood (3.3)
with g(x) multinomial leads us to such estimates. The ML estimate of g(x) is
7, = m/N. The nonparametric estimate of R,(x') = Ry, is n,;/n,. Here n, is the
number of observations having covariate value x' and ny, is the number of
observations having covariate x' and originating from stratum 1. ng, is similarly
defined. Note that these estimates do satisfy the constraint (3.4) or (3.5) when
h = N{/N, so they do in fact maximize the constrained log-likelihood. They do
not, of course, make any use of the fact that g is known.

The definitions (3.2) and the definition of w = ¢*(1 — k)/h enable us to go
from estimates of R, and g to estimates of fand Pf which are

131]?1 = wny/Ny, fz = ng;/No. (5.4)

3 Steinberg and Cardell actually study a slightly different case where the population is finite, and the
two samples, one containing observations with y = 1 and one randomly from the whole population,
may partially overlap. The model we study can be viewed as a limit of their framework where the size
of the population goes to infinity. They also gave a quite different justification for their estimator
than the one which follows.
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Note that the nonparametric estimator of f(x) is the sample distribution from
stratum 0, the random sample.
Inserting these estimates into the KL measure, (5.3), gives

C=Nq' Ynolog(l — Py(f) + cnylog(Pi(B/(1 — Pup)
!

N
—NG' Y (1= s, log(l — Py(B)) + ws,log [PARIAL — Pu(B)]. (5.5)
n=1
This is proportional to the Steinberg and Cardell criterion function, (5.1).

While the preceding argument is formally correct, it suffers from the difficulty
that the implicit ‘nonparametric ML’ estimate of P may lie outside the interval
zero to one. This is obvious from the relation between R, and P given in (3.2)
where, even though f(l is a proper probability, there is no guarantee that Pis.
This suggests that the Steinberg—Cardell estimator may behave poorly in small
samples, even though when P is logit the criterion function (5.1) is globally
concave.

It is interesting the look at the form of the Steinberg-Cardell estimator in
more detail, as it explains some of the finding of the Monte Carlo study. Suppose
that x is a scalar random variable, taking on two values, 0 and 1. Also, assume
that f, is known. The first-order condition for maximization of Lg¢ is

N

Lic=Y x,[ws,—(1 —s,)P,]=0.

n=1
Since x is binary this becomes
Li-=wS —P(N, —5)=0, (5.6)

where S is the number of the N, observations from stratum 1 having covariate
value | and P = 1/(1 + exp {f, + B }). Conditional on x = 1, § is Binomial
(N1, R((1; 8, g, h)).

Eq. (5.6) will have a finite solution for f8, if and only if wS < N| — S, an event
of probability less than 1. As a particular example suppose that 7 = 0 and that
equal numbers of observations come from each stratum, 4 = 0.5. Then, using the
Normal approximation to the Binomial, we find

Pr(no finite solution for §,) =1 — <D<\/V1%g )
Some values of this probability are given in Table 1.

Under these circumstances the efficient GMM estimator can be expected to
perform much better. The third moment compares ¢ to the average value of
P(x; B)/(hP(x;B)/q + 1 — h). In this case with 8, close to 0, this moment has very
little variance and gives an almost exact restriction on f;. This information is
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Table 1
Probabilities of no solution

N N, q Probability
100 50 0.90 0.355
400 200 0.90 0.228
1000 500 0.90 0.120
100 50 0.80 0.216
400 200 0.80 0.058
1000 500 0.80 0.0065

not used by the Steinberg—Cardell estimator. This is of course no proof that the
GMM estimator will in fact perform better in practice. It relies on a first round
of consistent estimates to get an estimate of the optimal weight matrix. The
choice of the first-round weight matrix does not matter asymptotically, but there
is no guarantee that the first-round estimator will actually converge. In practice,
however, we had no difficulty in obtaining convergence for the GMM estimator
using prior knowledge of g.

We did have occasional convergence problems with the GMM estimator for
the unknown g case, especially where the true value of ¢ was close to 0. This is not
surprising because when q is close to 0 the sampling is close to pure choice-based
sampling in which one subsample is chosen from those who make choice 0 and
one from those who make choice 1. But under pure choice-based sampling, with
a logit model, the intercept is not identified when g is unknown. While all
parameters are formally identified in our Monte Carlo experiment, with g = 0.2
we may be close enough to the nonidentified case that convergence problems
occur.,

In the Monte Carlo experiment x was choosen to have a bivariate normal
distribution with zero means, unit variance, and zero correlation. Three sets of
parameter values were used: (fi,, By, f2) equal to (0,1,1), (0,2,0.5), and
(— 1.89,1,1). The implied values for g were 0.5, 0.5, and 0.2. h was fixed at 0.5.
The number of observations was in all simulations equal to 400. The number of
replications was equal to 200 for each experiment. We report the averages of the
200 estimates (mean), the average of the asymptotic standard devations (asd), the
standard deviation of the 200 replications (ssd), the median, and the median of
the absolute deviation from the median (mad). The results are reported in
Tables 2 to 4.

The SC estimator performed significantly worse than the efficient GMM
estimator proposed in this paper. In fact, in the first and third set of simulations
9 and 27 of the replications did not lead to convergence. The GMM estimator
without knowledge of ¢ did not converge for 11, 2, and 19 of the simulations.
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Table 2

Design I: , =00, 8, =10,8,=10,9g=05,h=05

157

GMM (unknown q) GMM (known q) SC
Failure to
converge 11 0 9

Bo B B2 Bo B B2 Bo B B2
Mean 0.06 1.18 1.18 0.02 1.04 1.04 0.10 1.20 1.22
Asd 3398 14.43 11.41 0.10 0.26 0.26 0.42 0.77 0.77
Ssd 0.98 0.48 0.49 0.10 0.29 0.27 0.34 0.64 0.61
Med 0.06 1.09 1.11 0.01 1.01 1.02 0.04 1.05 1.10
Mad 0.66 0.32 0.30 0.06 0.19 0.15 0.20 0.30 0.31
Table 3
Design 1L: o, =0.0, ; =20, ,=05,4=05h =05

GMM (unknown q) GMM (known q) SC
Failure to
converge 2 0 27

Bo By B2 Bo By B, Bo B B
Mean - 001 2.18 0.52 000 203 0.50 0.08 2.58 0.70
Asd 1700  16.35 5.02 013 038 0.25 092 S.15 2.10
Ssd 0.81 0.66 0.31 013 038 0.26 0.46 1.98 093
Med —0.01 2.04 0.46 —0.01 1.98 0.49 0.00 2.10 0.51
Mad 0.46 033 0.17 008 026 0.17 023 0.62 0.24
Table 4
Design III: B, = — 1.89, f; = 1.0, B, = 1.000, g =02, h = 0.5

GMM (unknown q) GMM (known g} SC
Failure to
converge 19 0 0

Bo B B2 Bo B B2 Bo B B2
Mean —1.89 1.12 1.10 - 187 1.04 1.03 —192 1.09 1.06
Asd 133.68  61.76 61.90 009 018 0.18 020 032 0.32
Ssd 0.75 0.31 0.26 010 020 0.18 020 036 0.36
Med - 1.77 1.09 1.09 —1.87 1.04 1.03 —192 1.03 1.01
Mad 0.39 0.16 0.18 006 012 0.13 0.12 020 0.17
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There were no problems with convergence of the GMM estimator with
known ¢. The standard errors for the unknown ¢ GMM estimator and the
Steinberg—Cardell estimator reflect the convergence problems: they are mark-
edly different from what one would expect given normality and given the median
deviation from the mean. The finite-sample properties of the known ¢ GMM
estimator seem satisfactory and reflect its theoretical asymptotic superiority to
the Steinberg—Cardell estimator when the model is correctly specified.

6. Summary and conclusions

We have given computationally simple and asymptotically efficient es-
timators in the contaminated sampling problem. When the marginal choice
probability, g, is unknown the estimator maximizes a binary-choice log-likeli-
hood and, if the covariate distribution is multinomial with known support, it is
interpretatable as a constrained maximum likelihood estimator. When the
marginal choice probability is known the estimator solves a generalized method
of moments problem. When the covariate distribution is multinomial with
known support, the estimator is asymptotically equivalent to a constrained
maximum likelihood estimator. We also gave explicit forms for the asymptotic
covariance matrices in both cases as well as for a conditional likelihood es-
timator applicable when g is known. Additional a priori information can be
readily incorporated into the GMM procedure as long as it is expressible as
amoment condition. Imbens and Lancaster (1992) gives further examples of this.

We have also discussed the logit model as a special case and compared
numerically the properties of the estimators proposed in this paper with an
alternative method suggested by Steinberg and Cardell (1992) which is applic-
able when ¢ is known. When g is known, the efficient generalized method of
moments estimator exhibited satisfactory performance. The estimator of Stein-
berg and Cardell failed to exist in a significant fraction of simulations, as did the
efficient GMM procedure in the absence of knowledge of the marginal choice
probability.

Appendix: Outline of proofs of Theorems 1 and 2

Consistency and asymptotic normality of the GMM estimators, both when
q 1s known and when it is unknown, can be proved in a generalized method of
moments framework as described by Hansen (1982) and Manski (1988). For
instance, Theorems 2.1 and 3.1 in Hansen (1982) prove consistency and asymp-
totic normality for generalized method of moments estimators. Conditions that
ensure that the regularity conditions for these theorems are satisfied are: (i)
compactness of sample and parameter spaces (with true parameters interior to



T. Lancaster, G. ImbensJournal of Econometrics 71 (1996) 145 -160 159

the parameter space), (ii) continuity of P(x; ) and its derivative with respect
to f, (i) uniqueness of the solution to &(¥(J)) =0, and (iv) full rank of
Aand I.

The estimator of Theorem 1 was derived initially for the case in which x has
a discrete distribution with known finite support. The estimator was shown to
be a maximum likelihood estimator in that case and therefore achieves the
Cramer-Rao bound for regular estimators. This result can be extended to the
continuous regressor case using the approach to semiparametric efficiency
bounds of Begun, Hall, Huang, and Wellner (1984).

From (3.1) the log-density of a single observation is

log g(s, x) = slog P(x; B) — slogq + slogh
+ (1 — s)log(l — h) + log f(x). (A.1)

Consider a parametric submodel in which the unknown density (. ) is paramet-
rized by 5. In this submodel the scores for  and » are

Sp=s(pp/P —qp/q),  Sy= —slgy/q) + 1,/ 1. (A2)
The tangent set, .7 ,* is of the form
d(x) — s(&(d(x))/h)

where d(x) is unrestricted apart from the requirement that jd(x)dF(x) = 0. The
efficient score for f§ is

§* = (s — R(x; ) py/P + d/q),

where

s_ _ o SWRP)

== Alegzl-
&(R)

The inverse of the covariance matrix of S* is the variance of the GMM estimator
described in Theorem 1.

The claim in Theorem 2 that the GMM estimator is asymptotically equiva-
lent to the constrained ML estimator when the covariate distribution is discrete
with known support is established by direct calculation using classical results
on the covariance matrix of the constrained maximum likelihood estimator.
The general form of this result is given in Lemma 1 of Imbens (1992). The
extension to the continuous covariate case can be based on Theorem 2 of that

paper.

*See Newey (1990).
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