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GROUPING ESTIMATORS ON
HETEROSCEDASTIC DATA

ToNy LANCASTER
University of Birmingham

This paper gives numerical comparisons of the efficiency of Ordinary
Least Squares (OLS) and Grouping Estimators in simple linear regres-
sion. The disturbances are assumed to have unequal variances, and an
assumption is made about the form of this heteroscedasticity. It is
shown that for some types of heteroscedasticity a Grouping Estimator
can be more efficient than Ordinary Least Squares.

E CONSIDER the problem of efficient estimation in simple linear regression
with heteroscedastic disturbances. The model is,

Y,=a—|—BXz+et, (z=1,2,n) (1)

The quantities involved are assumed to satisfy the assumptions of the Gauss-
Markov theorem, (in particular, X is taken as non-stochastic), except that the
variances of the disturbances are not necessarily equal. The minimum variance,
unbiased, linear estimator, (BLUE), for this model is Aitken’s Generalised
Least Squares Estimator, which amounts to application of OLS after division
through by the standard deviations of the disturbances. Other unbiased linear
estimators are inefficient, have greater variances, in general.

One well-known exception to this rule, however, arises in the special case in
which (a) a=0, and (b) var. ¢; « X;. In this case the BLUE of 8 is,

b = V/X, 2)

the ratio of the means of ¥ and X, which can be regarded as a member of the
class of Grouping Estimators.

Following Nair & Shrivastava [6] a Grouping Estimator is formed in the
following way. With k& determining variables, (X, - - - Xx) and k parameters,
(By, - - - Br) to be determined, divide the n (>Fk) sets of observations, (¥,
X, - - - Xri;i=1,2, - - -, n) into k exclusive groups. The j'th group contains
n; (>0) sets of observations where the n; satisfy Zn; <n. For each group find
the means of Y and the X’s. Then estimates of the parameters are found as
the coefficients of the plane passing through the k points (¥;, Xuj, - - -, X
j=1,2, -+, k). Note that this only defines, for any n and k, a class of esti-
mators the number of whose members is the number of different ways in which
the observations can be divided into k groups.

For the case k=1, regression through the origin, this leads to the estimators,

by = Y/X;, 3)

where V; and X; are the means of n; of the n observations. When n;=n, all
observations are used, this estimator is the ratio estimator, 2, which happens
to coincide with the BLUE when the disturbance variances are proportional
to X.

For simple linear regressions, k=2 with one X a dummy variable, this leads
to the slope estimators,
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GROUPING ESTIMATORS 183
by = (V1— 7V9)/(X1 — Xo), 4)

where the 7’s and X’s are the means of exclusive groups containing n; and n,

observations respectively. Particular members of this class are the estimators

of Wald [10], Bartlett [2], and the authors cited above. The estimator of Wald

has ny=n,=mn/2 while that of Bartlett and Nair & Shrivastava hagsny=n,=n/3.

For both, one group contains the smallest X values and the other the largest.
For general k the estimators are defined by the matrix equation?

b1 = (GX)7'Gy. &)

X and y are the matrix (n Xk) and vector (nX1) of the n ungrouped observa-
tions on k determining variables and the dependent variable. G is a grouping
matrix (kXn) of the type defined by Prais & Aitchison [7], and has the effect
of replacing sets of elements of a column vector by their means.?

2

The observation that the minimum variance estimator and a Grouping
Estimator coincide, although for one special sort of heteroscedasticity and a
very simple regression model, suggests that it may be worth examining the
relative efficiency of Grouping Estimators under heteroscedasticity in more
detail. We shall make this examination for the simple linear regression model
under the following pair of assumptions.

A. X is continuously distributed in two parameter lognormal form.
B. E(&)=)\X?, (A>0).

Assumption A has two parts. The first is that the discrete distribution of the
n values of X is in fact continuous. The point of this fiction is that it enables us
to replace sums of the form =X? by integrals of X». It does not seem too un-
reasonable except that for very small n it leads to nonsense results. It is a
device also used by Theil [9] in a similar context. Note that we still assume
the n values of X fixed in repeated samples.

The second part is the lognormality assumption. This has empirical justifica-
tion for much cross-sectional economic data. It has the implication that all X
values have the same sign, which we shall take to be positive.

Assumption B appears the more restrictive of the two. It states that the
variance of the disturbance (or, equivalently, of y) is proportional to a power of
X. This power, p, will be referred to as the degree of heteroscedasticity. The
case p =0 gives constant variance, homoscedasticity.

There appears to have been little empirical work on the subject of hetero-
scedasticity in regression analysis. Goldberger [3] states that the form B with
p=2, occurs in the savings-income relationship, and Johnston [4] suggests
that “something of this kind may be expected in budget studies.” Morgan et al
[5] investigated the residual variance around savings-income regressions and
found that “a good approximation states that the standard deviation of savings

1 Note the analogy with the equations of Instrumental Variable Estimation, (Z7X)1ZTy, where Z is the matrix
of observations on k% instrumental variables.

2 Actually G differs slightly from the matrix described by Prais and Aitchison in that it will have columns of
zeros corresponding to those (n —Z2;n;) observations not included in any of the % groups.
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within each of several income classes is proportional to the average income of
each class”. (p. 203). Appendix 2 describes a small study of the dependence of
the variance of company dividend payments on company profits using pooled
cross-section time series data. The evidence favours a relationship of the form
B with a value of p of about 1.5.

The assumptions, taken together, have the advantage of making the analysis
and calculations relatively simple.?

The efficiency of a linear unbiased estimator, denoted by E, is equal to its
variance divided into that of the BLUE. The OLS estimator of 8 in 1 is well
defined, as is the minimum variance estimator, given assumption B. Out of the
class of Grouping Estimators of 8 we shall consider two members, that asso-
ciated with Wald and that associated with Bartlett. These Grouping Esti-
mators, which correspond to two possible ways of arranging the observations
into two groups, are illustrated in figure A

Y (X)

7 /

0O S T X

v(X) is the lognormal frequency function and a typical function has been
drawn in. The points S and 7T partition the X distribution into three groups.
For both the Wald and Bartlett estimators the interval 0 <z < represents the
observations allocated to Group 1 and the interval 7 <x < « the observations
allocated to Group 2. Denoting by I'(X) the lognormal distribution function
we have;

b: (1): Wald’s Estimator, I'(S) = I'(T) = 1/2,
b1 (2): Bartlett’s Estimator, I'(S) = 1 — I'(T) = 1/3.

3 Theil [8] found an expression for the variance of an OLS Estimator in the presence of heteroscedasticity of
the type in which the standard deviation of y is proportional to its mean. His result is very complex though he made
fewer assumptions than we shall. It may also be noted that a good deal is now known about the efficiency of Group-
ing Estimators of the Wald and Bartiett type on homoscedastic models, see, for example, Theil & Van Ijzeren [9 ]



GROUPING ESTIMATORS 185

Wald’s estimator uses all observations and splits them at the median of the X
distribution, while Bartlett’s estimator discards the central third of the X
observations, and uses only the tails of the distribution.

Now using assumptions A and B we require to find expressions for the vari-
ances of the BLUE, OLS, and the two Grouping Estimator, and hence to de-
rive expressions for the efficiencies of the latter three. To illustrate the cal-
culations involved we shall derive an expression for the variance of a Grouping
Estimator of the Wald or Bartlett type, in which the X observations used
comprise tails of equal area of the distribution.

by = (V1= Vy)/(X1— Xo) =B+ (& — &)/(X1 — Xo).
Hence,
var. b, = E(& — &)/ (X1 — X1)?,
= NEXi/n 4 2Xi/n) /(X — X, 6)

using assumption B, the uncorrelatedness of the e;, and the non-stochastic
nature of X. The first sum is taken over the n; observations in group 1 and the
second over the n. in group 2. We now make use of assumption B by setting,

m/n = T(S); ny/n =1~ T(T) = I(S);

for these are the proportions of the observations falling into the two groups.
Further, 2X?/n, is the mean value of X? in the interval 0 <X <8, and similarly
for ZX7/ns, so we set,

» S ¥
Y X/, = f X"dr(X)/ (I (S));

0

> Xi/ne = f,prdI‘(X)/(P(S)).

)\[fosXde(X) + f:X"dr(X)]
n[foSXdI‘(X) —f:XdI‘(X) T

The problem then reduces to evaluating integrals of the lognormal distribu-
tion which is easily done using Aitchison & Brown’s (1) theorem on moment
distributions.

Expressions for the variances of the BLUE and OLS Estimators are derived
in a similar way and expressions for the efficiencies may then be derived. The
‘efficiencies of the OLS and Grouping Estimators are found to depend upon p,
the degree of heteroscedasticity and upon # the coefficient of variation of the
distribution of X. They do not depend upon A, or upon n, the sample size, or
upon the location parameter of the X distribution, though all these enter into
the variances of the estimators.

This then gives,*

var. b, =

4 For Wald’s Estimator this expression simplifies further since S =1".
5 (1), p. 12, Theorem 2.6.
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In order to study numerically the way in which the efficiency of the different
estimators depends upon p and 5 it was decided to evaluate efficiency for a
number of values of these parameters. The range of #, the coefficient of varia-
tion, was from 0.1 to 1.0 by intervals of 0.1. This covers the values which
might normally be expected on empirical data. The range of p chosen was from
—2 to 2 by intervals of 0.5. The interval from 0 to 2 covers types of hetero-
scedasticity ranging from constant variances to variances varying as the square
of X. Negative values of p were considered because of the frequency with which
economists use regression on deflated data. If, for the model 1, ¢ is heteroscedas-
tic of degree p then after division through by X, the deflated disturbance will
be heteroscedastic of degree p—2, which may be negative.®

The Table given in Appendix 1 gives the computed expressions for the effi-
ciency of the OLS and the two Grouping Estimators. For each of the 9 values
of p, efficiency is tabulated against n. The diagrams below present some of the
results in graphical form. In diagrams 1 (a) to 1 (d) the efficiency of the OLS
and Bartlett estimators is plotted against 4 for four values of p. In diagrams
2 (a) to 2 (c) the efficiency of these estimators is plotted against p for three
values of 7.

The principal features of the results are as follows.

1. In almost all cases the efficiency of the estimators diminishes as the
variance of the distribution of the X observations increases. This is an obvious
consequence of our assumption, B, about the form of the heteroscedasticity.
The more widely spread is X, the greater the variation in the disturbance vari-
ances, and the greater the penality for failing to take this into account in the
estimation procedure.

2. While the OLS Estimator has maximum efficiency, of unity of course,
when the data is homoscedastic, p =0, the Grouping Estimator has maximum
efficiency when the disturbance variance is proportional to X, p=1. For
Bartlett’s Estimator this efficiency is about 809, and almost independent of
the dispersion of X. That the maximum efficiency is at p=1 is presumably
related to the fact noted earlier that when « =0 a Grouping Estimator coincides
with the minimum variance estimator when the disturbance variance is pro-
portional to X.

3. For heteroscedasticity of degree 1 or more the Grouping Estimator is
more efficient than OLS, except when the X values show very little dispersion.
The superiority of the Grouping Estimator is greater the more widely spread
are the X observations.

4. Where the coefficient of variation of X exceeds about 0.5 the efficiency of
the OLS Estimator falls off very rapidly with departures from homoscedastic-
ity. The same applies to the efficiency of the Grouping Estimator with de-
partures from heteroscedasticity of degree 1.

5. Bartlett’s estimator is almost always more efficient than Wald’s. This ex-
tends the well-known fact of the superiority of the ‘three group’ procedure for
homoscedastic models.

8 F(e;/X:)? =(1/X4)% E(e) =(1/X)? MNX:P = X;P2.
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6

The reason why these Grouping Estimators turn out to be relatively efficient
when the disturbance variance varies with X is that grouping amounts to
weighting the observations. Taking the arithmetic means of the largest and
of the smallest observations and treating the resulting pair as single observa-
tions is to weight down the largest X observations, (with large disturbance
variances), and to weight up the smaller X values. Since the optimal estimation
procedure is to weight the observations in inverse proportion to their variances
the grouping method comes closer to the optimum than does ordinary (un-
weighted) Least Squares. Of course when the disturbance variance varies
inversely with X the grouping method weights in the wrong direction and is in

E

4

.3
1 (A) 1®

2

A

o

1 2 3 4 5 6 .7 6 .9 1.0 A 2 3 4 5 6 7 8 .9 10

n n
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1.0

9

8

7

6
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E
%
1 (D)
3
2
1(C)
A
[}
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 .8 9 1.0
n
p=2 p=-=2
DIAGRAM 1

EFFICIENCY OF ESTIMATION (E) AS A FUNCTION OF THE DISPERSION OF X, (n), FOR FOUR VALUES OF p

o OLS (bg) x Grouping (by (2) )
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DIAGRAM 2

EFFICENCY OF ESTIMATION AS A FUNCTION OF THE DEGREE OF HETEROSCEDASTICITY (p) FOR THREE VALUE OF n

0 OLS (by) : x Grouping (bq (2) )

consequence further from the optimum than OLS, as emerges clearly in
diagram 2.

Our results suggest that, in addition to its well-known computational sim-
plicity, the Grouping Estimator performs better than OLS in the presence of
heteroscedasticity of a type which the scanty evidence suggests is common
with economic data. But there seems a great need for investigations into the
frequency and form of heteroscedasticity in economic variables.
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APPENDIX I. TABLES OF EFFICIENCIES
by (1) a(2) by bi(1) bi(2) b (1) Wi(2)

.10 .924 583 .720 .956  .599 .743 .980 .613 .762

.20 .733  .450 .543 .839 .501 .614 .925 .548 .678

.30 .509 .297 .346 .680 .377 .452 .842 457 562

.40 .316 .172 .192 .516  .258 .302 .743  .360 .438

.50 181 .089 .096 371 164 187 .640 .270 .325

7 .60  .097 .042 .044 .256  .098 .109 .541 196 .232
.70 .050 .019 .019 .172.056  .061 .450 138 .162

.80 .025 .008 .008 114 .031 .033 372 .095 110

.90 .013 .003 .003 .074 .017 .018 .305  .065 .075

1.00 .006 .001 .001 .048  .009 .010 .250  .044 .050

p=-2 p=-—1.0 p=0.0

.10 .995  .624 777 1.000 .631 .787 995 .636  .792

.20 981 .587 .731 1.000 .616 .769 981 .635 .791

.30 .958 .532 .663 1.000 .592 .742 .960 .632 .787

.40 .929 .467 .582 1.000 .562 .707 .934  .629 .783

.50 .896 .400 .498 1.000 .528 .667 905 .624 778

7 .60 .860 .335 .417 1.000 .492 .624 877 .619 772
.70 .823  .277 345 1.000 .455 .580 .849 .614 .765

.80 787 226 .282 1.000 .420 .538 .822  .608 .758

.90 .751 .184 .229 1.000 .386 .497 .797 .602  .750

1.00 .718 .149 .185 1.000 .354 .458 774 595 742

p=-—1.5 =-0.5 p=0.5

.10 .980 .638 .793 957 .636 .789 .925  .631 .780

.20 .927  .641 .793 .846 .635 .777 .748 .616 .743

.30 .853 .646 .793 708 .632  .758 .554  .592  .690

.40 .770 .652 .793 573 629 .737 .391  .562  .630

.50 690 .660 .794 457 624 713 270 528  .569

7 .60 .615 .669 .795 .363  .619 .690 .184 492 (512
.70 .550 .678 .797 .288 .614 .668 .126  .455 .459

.80  .493 .688 .799 230 .608 .648 .086 .420 .413

.90 .443 .698 .802 .184  .602 .629 .058 .386 .372

1.00 .400 .708 .805 .148 595 612 .040 .354 .336

p=1.0 p=1.5 p=2.0

Notes: b2 : OLS
bi(1): “Wald’s” Two-Group
b1(2): “Bartlett’s” Three Group
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APPENDIX 2. TESTING THE FORM OF HETEROSCEDASTICITY

Company dividends and profits can be assumed, as a reasonable first ap-
proximation, to satisfy a simple regression equation of the form described by
1. In addition, profits of firms in the sample used for this test were almost
uniformly non-negative so that assumption B could be appropriate to this
data. To test this assumption we strictly need repeated observations on
dividends, D, for each level of profits, P. Replication is rarely possible with
economic data so we must approximate by grouping the data such that within
groups the variation in profits is small.

2.5 3
PROFITS AND THE VARIANCE x M
OF DIVIDENDS
2.0
log var 1.5
D
1.0
.5
0
.5 2.5
log P

P = mean profits.
var. D = variance of dividends.
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We have 200 pairs of observations which are the dividends and profits of 20
manufacturing companies over 10 consecutive years. These 200 pairs were
ordered by the size of profits and divided into 20 groups of 10 pairs of obser-
vations. We then computed the variance of dividends and the mean profit
within each group and plotted the logarithms of the observations, figure 3. If
assumption B is appropriate the observations ought to be scattered around a
straight line of slope p and intercept log M. The Least Squares estimate of p is
1.47 and the r? is .88, which suggests that assumption B is not inappropriate
for this data. Since, in addition, the profits of these firms are quite well described
by alognormal curve, and have a coefficient of variation of about .65, the tables
of appendix 1 suggest that the OLS estimator of 8 would have an efficiency as
low as .3, while the efficiency of Bartlett’s estimator would be in the region of
.68. Grouping this data would be twice as efficient as applying Ordinary Least
Squares.

This doesn’t, of course, imply that one cannot do any better than apply
Bartlett’s estimator to this data. Presumably an approximation to the Gen-
eralised Least Squares estimator by dividing through by z#/? (=~ ;%) would be
still more efficient. What it does mean is that the Grouping estimator stands up
to the heteroscedasticity of this data markedly better than Ordinary Least
Squares.

We also tested the alternative hypothesis that the variance of dividends is
proportional to some power, g, of its mean, i.e. E(&)=(a+8X:)% The case
q=2 gives constancy of the coefficient of variation of dividends. We regressed
the logarithm of the variance of D within groups linearly against the log of its
mean and found an % of .87 and an estimate of ¢ of 1.53. The two hypotheses
perform equally well because of the smallness of the intercept in the regression
equation, for clearly when this is zero the hypotheses are equivalent.



