

The Covariance Matrix of the Information Matrix Test

Tony Lancaster

Econometrica, Volume 52, Issue 4 (Jul., 1984), 1051-1054.

Stable URL:

http://links.jstor.org/sici?sici=0012-9682%28198407%2952%3A4%3C1051%3ATCMOTI%3E2.0.CO%3B2-K

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

Econometrica is published by The Econometric Society. Please contact the publisher for further permissions regarding the use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/econosoc.html.

Econometrica ©1984 The Econometric Society

JSTOR and the JSTOR logo are trademarks of JSTOR, and are Registered in the U.S. Patent and Trademark Office. For more information on JSTOR contact jstor-info@umich.edu.

©2002 JSTOR

NOTES AND COMMENTS

THE COVARIANCE MATRIX OF THE INFORMATION MATRIX TEST

By Tony Lancaster

In this note we point out how the covariance matrix of the information matrix test, due to White [2], can be estimated without the computation of analytic third derivatives of the density function.

Let F be the logarithm of a density function depending on p parameters θ and let $F_1(p \times 1)$ and $F_2(p \times p)$ contain $\{\partial F/\partial \theta_i\}$ and $\{\partial^2 F/\partial \theta_i \partial \theta_i\}$ respectively.

The basis of the information matrix test is the well-known equality $E(F_2) = -E(F_1F_1)$, or in an obvious scalar notation.

(1)
$$\int F_2^{ij} f du = -\int F_1^i F_1^j f du \qquad (i, j = 1, 2, ..., p),$$

where $f = \exp\{F\}$, the variate is u and F_1 and F_2 are calculated at the true value of θ . If we differentiate both sides of (1) with respect to $\theta_k^{\ 1}$ we readily find, writing F_3^{ijk} for $\partial^3 F/\partial \theta_i \partial \theta_i \partial \theta_k$,

(2)
$$E(F_3^{ijk}) = -\left\{ E(F_2^{ij}F_1^k) + E(F_2^{ik}F_1^l) + E(F_2^{ik}F_1^l) + E(F_1^{i}F_1^k) \right\}$$

$$(i, j, k = 1, 2, \dots, p).$$

If we let the superscript c denote the operation of column stacking a matrix and let $F_3(p^2 \times p)$, have *i*th row which contains the θ derivatives of the *i*th element of F_2^c , then the matrix form of (2) is

(3)
$$E(F_3) = -E(F_2 \otimes F_1 + F_1 \otimes F_2) - E(F_2 + F_1 F_1')^c F_1'.$$

The information matrix test based on n independent realizations of u compares the sample average values of F_2 and $-F_1F_1'$, whose expectations are equal according to (1). Specifically if, following White's notation, 2 we let

$$d = (F_2 + F_1 F_1')^c, \qquad D_n = n^{-1} \sum d \qquad (q \times 1), \quad q = p(p+1)/2,^3$$

$$\nabla D_n = n^{-1} \sum \partial d_j / \partial \theta_k, \qquad \nabla D = E(\partial d_j / \partial \theta_k) \qquad (q \times p),$$

$$A_n = n^{-1} \sum F_2, \qquad A = E(F_2) \qquad (p \times p),$$

$$B_n = n^{-1} \sum F_1 F_1', \qquad B = E(F_1 F_1') \qquad (p \times p),$$

then the test statistic takes the form

$$(4) \qquad \mathscr{I}_n = n\hat{D}'_n\hat{V}^{-1}\hat{D}_n$$

¹ Mild regularity conditions additional to those given by White are needed to justify differentiating under the integral sign.

² Except that we omit the observation subscript, i, for notational clarity. Summation is over $i = 1, 2, \dots, n$.

 $^{^{3}}q$ is the number of distinct elements of F_{2} and in what follows we assume row repetitions have been deleted from d and D_{n} .

where the $\hat{\theta}$ indicates evaluation of θ at the maximum likelihood estimate, $\hat{\theta}$, and \hat{V} is a consistent estimator of the covariance matrix of $\sqrt{n} \hat{D}_n$ which is asymptotically N(0, V) when F is correctly specified. The matrix V is

$$V = E(d - \nabla D \cdot A^{-1} \cdot F_1)(d - \nabla D \cdot A^{-1} \cdot F_1)'$$

and White's \hat{V} replaces this expectation by its sample analogue with θ set equal to $\hat{\theta}$, i.e. it replaces E by $n^{-1}\sum$ and θ by $\hat{\theta}$ throughout, an estimator we shall call \hat{V}_1 . However, differentiating d we find

$$\nabla D = E[F_3 + F_1 \otimes F_2 + F_2 \otimes F_1]$$
$$= -E[(F_2 + F_1 F_1')^c F_1']$$
$$= -E(dF_1')$$

using (3). Thus, when F is correctly specified

$$V = E(dd') + \nabla D \cdot A^{-1} E(F_1 F_1') A^{-1} \nabla D' - \nabla D \cdot A^{-1} E(F_1 d')$$
$$- E(dF_1') A^{-1} \nabla D'$$
$$= E(dd') - E(dF_1') [E(F_1 F_1')]^{-1} E(F_1 d')$$

which is consistently estimated under the assumptions of [2] by replacing E by $n^{-1}\sum$ and θ by $\hat{\theta}$. This estimator, \hat{V}_2 , can be recognized as the inverse of the upper left submatrix of the inverse of the nonnegative definite matrix

$$n^{-1}(\hat{Y}'\hat{Y})$$

where $\hat{Y} = (\hat{Y}_1 \ \hat{Y}_2)$, of order $n \times (q + p)$, and \hat{Y}_1 has rows of the form \hat{d}' , \hat{Y}_2 rows of the form \hat{F}'_1 , and the hat indicates calculation at $\theta = \hat{\theta}$. The estimator is thus nonsingular if $\hat{Y}'\hat{Y}$ is, and does not require analytic third derivatives of the log likelihood function. With

$$\hat{V}_2 = n^{-1} (\hat{Y}_1' \hat{Y}_1 - \hat{Y}_1' \hat{Y}_2 (\hat{Y}_2' \hat{Y}_2)^{-1} \hat{Y}_2' \hat{Y}_1)$$

and since $\hat{D}'_n = n^{-1}\iota'\hat{Y}_1$ where ι is a column of n ones the information matrix statistic, (4), with \hat{V}_2 as covariance matrix estimator is⁴

(5)
$$\mathscr{I}_n = \iota' \hat{Y}_1 (\hat{Y}_1' \hat{Y}_1 - \hat{Y}_1' \hat{Y}_2 (\hat{Y}_2' \hat{Y}_2)^{-1} \hat{Y}_2' \hat{Y}_1)^{-1} \hat{Y}_1' \iota.$$

An alternative representation of \mathscr{I}_n exploits the fact that, from the likelihood equations, $\iota' \hat{Y}_2 = 0$ which implies that \mathscr{I}_n of (5) is also given by the more concise expression

(6)
$$\mathscr{I}_n = \iota' \hat{Y} (\hat{Y}' \hat{Y})^{-1} \hat{Y}' \iota.$$

Since $\iota'\iota = n$ this expression can be recognized as n times an R^2 statistic in the regression of ι on \hat{Y} , i.e of unity on \hat{d}' and \hat{F}'_1 , but in which the total sum of squares is taken around the origin rather than the mean.

⁴For a test based on fewer than all q = p(p+1)/2 elements of d one deletes columns of \hat{Y}_1 and corresponding rows and columns of \hat{V}_2 .

This note was prompted by Chesher's [1] elegant demonstration⁵ that the information matrix test is a score test of model specification against the alternative of local random parameter heterogeneity.

University of Hull

Manuscript received April, 1983; revision received July, 1983.

⁵A revised version under the same title is contained in this issue of *Econometrica*, 52(1984), 865–872.

REFERENCES

- [1] CHESHER, A.: "Testing for Neglected Heterogeneity," University of Birmingham Discussion Paper, A282, 1982.
- [2] WHITE, H.: "Maximum Likelihood Estimation of Misspecified Models," *Econometrica*, 50(1982), 1–25.