The Covariance Matrix of the Information Matrix Test Tony Lancaster Econometrica, Volume 52, Issue 4 (Jul., 1984), 1051-1054. Stable URL: http://links.jstor.org/sici?sici=0012-9682%28198407%2952%3A4%3C1051%3ATCMOTI%3E2.0.CO%3B2-K Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. *Econometrica* is published by The Econometric Society. Please contact the publisher for further permissions regarding the use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/econosoc.html. Econometrica ©1984 The Econometric Society JSTOR and the JSTOR logo are trademarks of JSTOR, and are Registered in the U.S. Patent and Trademark Office. For more information on JSTOR contact jstor-info@umich.edu. ©2002 JSTOR ### NOTES AND COMMENTS ## THE COVARIANCE MATRIX OF THE INFORMATION MATRIX TEST ### By Tony Lancaster In this note we point out how the covariance matrix of the information matrix test, due to White [2], can be estimated without the computation of analytic third derivatives of the density function. Let F be the logarithm of a density function depending on p parameters θ and let $F_1(p \times 1)$ and $F_2(p \times p)$ contain $\{\partial F/\partial \theta_i\}$ and $\{\partial^2 F/\partial \theta_i \partial \theta_i\}$ respectively. The basis of the information matrix test is the well-known equality $E(F_2) = -E(F_1F_1)$, or in an obvious scalar notation. (1) $$\int F_2^{ij} f du = -\int F_1^i F_1^j f du \qquad (i, j = 1, 2, ..., p),$$ where $f = \exp\{F\}$, the variate is u and F_1 and F_2 are calculated at the true value of θ . If we differentiate both sides of (1) with respect to $\theta_k^{\ 1}$ we readily find, writing F_3^{ijk} for $\partial^3 F/\partial \theta_i \partial \theta_i \partial \theta_k$, (2) $$E(F_3^{ijk}) = -\left\{ E(F_2^{ij}F_1^k) + E(F_2^{ik}F_1^l) + E(F_2^{ik}F_1^l) + E(F_1^{i}F_1^k) \right\}$$ $$(i, j, k = 1, 2, \dots, p).$$ If we let the superscript c denote the operation of column stacking a matrix and let $F_3(p^2 \times p)$, have *i*th row which contains the θ derivatives of the *i*th element of F_2^c , then the matrix form of (2) is (3) $$E(F_3) = -E(F_2 \otimes F_1 + F_1 \otimes F_2) - E(F_2 + F_1 F_1')^c F_1'.$$ The information matrix test based on n independent realizations of u compares the sample average values of F_2 and $-F_1F_1'$, whose expectations are equal according to (1). Specifically if, following White's notation, 2 we let $$d = (F_2 + F_1 F_1')^c, \qquad D_n = n^{-1} \sum d \qquad (q \times 1), \quad q = p(p+1)/2,^3$$ $$\nabla D_n = n^{-1} \sum \partial d_j / \partial \theta_k, \qquad \nabla D = E(\partial d_j / \partial \theta_k) \qquad (q \times p),$$ $$A_n = n^{-1} \sum F_2, \qquad A = E(F_2) \qquad (p \times p),$$ $$B_n = n^{-1} \sum F_1 F_1', \qquad B = E(F_1 F_1') \qquad (p \times p),$$ then the test statistic takes the form $$(4) \qquad \mathscr{I}_n = n\hat{D}'_n\hat{V}^{-1}\hat{D}_n$$ ¹ Mild regularity conditions additional to those given by White are needed to justify differentiating under the integral sign. ² Except that we omit the observation subscript, i, for notational clarity. Summation is over $i = 1, 2, \dots, n$. $^{^{3}}q$ is the number of distinct elements of F_{2} and in what follows we assume row repetitions have been deleted from d and D_{n} . where the $\hat{\theta}$ indicates evaluation of θ at the maximum likelihood estimate, $\hat{\theta}$, and \hat{V} is a consistent estimator of the covariance matrix of $\sqrt{n} \hat{D}_n$ which is asymptotically N(0, V) when F is correctly specified. The matrix V is $$V = E(d - \nabla D \cdot A^{-1} \cdot F_1)(d - \nabla D \cdot A^{-1} \cdot F_1)'$$ and White's \hat{V} replaces this expectation by its sample analogue with θ set equal to $\hat{\theta}$, i.e. it replaces E by $n^{-1}\sum$ and θ by $\hat{\theta}$ throughout, an estimator we shall call \hat{V}_1 . However, differentiating d we find $$\nabla D = E[F_3 + F_1 \otimes F_2 + F_2 \otimes F_1]$$ $$= -E[(F_2 + F_1 F_1')^c F_1']$$ $$= -E(dF_1')$$ using (3). Thus, when F is correctly specified $$V = E(dd') + \nabla D \cdot A^{-1} E(F_1 F_1') A^{-1} \nabla D' - \nabla D \cdot A^{-1} E(F_1 d')$$ $$- E(dF_1') A^{-1} \nabla D'$$ $$= E(dd') - E(dF_1') [E(F_1 F_1')]^{-1} E(F_1 d')$$ which is consistently estimated under the assumptions of [2] by replacing E by $n^{-1}\sum$ and θ by $\hat{\theta}$. This estimator, \hat{V}_2 , can be recognized as the inverse of the upper left submatrix of the inverse of the nonnegative definite matrix $$n^{-1}(\hat{Y}'\hat{Y})$$ where $\hat{Y} = (\hat{Y}_1 \ \hat{Y}_2)$, of order $n \times (q + p)$, and \hat{Y}_1 has rows of the form \hat{d}' , \hat{Y}_2 rows of the form \hat{F}'_1 , and the hat indicates calculation at $\theta = \hat{\theta}$. The estimator is thus nonsingular if $\hat{Y}'\hat{Y}$ is, and does not require analytic third derivatives of the log likelihood function. With $$\hat{V}_2 = n^{-1} (\hat{Y}_1' \hat{Y}_1 - \hat{Y}_1' \hat{Y}_2 (\hat{Y}_2' \hat{Y}_2)^{-1} \hat{Y}_2' \hat{Y}_1)$$ and since $\hat{D}'_n = n^{-1}\iota'\hat{Y}_1$ where ι is a column of n ones the information matrix statistic, (4), with \hat{V}_2 as covariance matrix estimator is⁴ (5) $$\mathscr{I}_n = \iota' \hat{Y}_1 (\hat{Y}_1' \hat{Y}_1 - \hat{Y}_1' \hat{Y}_2 (\hat{Y}_2' \hat{Y}_2)^{-1} \hat{Y}_2' \hat{Y}_1)^{-1} \hat{Y}_1' \iota.$$ An alternative representation of \mathscr{I}_n exploits the fact that, from the likelihood equations, $\iota' \hat{Y}_2 = 0$ which implies that \mathscr{I}_n of (5) is also given by the more concise expression (6) $$\mathscr{I}_n = \iota' \hat{Y} (\hat{Y}' \hat{Y})^{-1} \hat{Y}' \iota.$$ Since $\iota'\iota = n$ this expression can be recognized as n times an R^2 statistic in the regression of ι on \hat{Y} , i.e of unity on \hat{d}' and \hat{F}'_1 , but in which the total sum of squares is taken around the origin rather than the mean. ⁴For a test based on fewer than all q = p(p+1)/2 elements of d one deletes columns of \hat{Y}_1 and corresponding rows and columns of \hat{V}_2 . This note was prompted by Chesher's [1] elegant demonstration⁵ that the information matrix test is a score test of model specification against the alternative of local random parameter heterogeneity. University of Hull Manuscript received April, 1983; revision received July, 1983. ⁵A revised version under the same title is contained in this issue of *Econometrica*, 52(1984), 865–872. ### REFERENCES - [1] CHESHER, A.: "Testing for Neglected Heterogeneity," University of Birmingham Discussion Paper, A282, 1982. - [2] WHITE, H.: "Maximum Likelihood Estimation of Misspecified Models," *Econometrica*, 50(1982), 1–25.