An Introduction to Modern Bayesian Econometrics

Tony Lancaster

May 26, 2003
Contents

Introduction xi

1 The Bayesian Algorithm 1
 1.1 Econometric Analysis 1
 1.2 Statistical Analysis 2
 1.3 Bayes' Theorem 3
 1.3.1 Parameters and Data 8
 1.3.2 The Bayesian Algorithm 9
 1.4 The Components of Bayes' Theorem 9
 1.4.1 The Likelihood $p(y|\theta)$ 10
 1.4.2 The Prior $p(\theta)$ 28
 1.4.3 The Posterior $p(\theta|y)$ 39
 1.5 Conclusion and Summary 56
 1.6 Exercises and Complements 57
 1.7 Appendix to Chapter 1: Some Probability Distributions 63
 1.8 Bibliographic Notes 66

2 Prediction and Model Criticism 69
 2.1 Methods of Model Checking 70
 2.2 Informal Model Checks 71
 2.2.1 Residual QQ Plots 72
 2.3 Uncheckable Beliefs? 76
 2.4 Formal Model Checks 79
 2.4.1 Predictive Distributions 79
 2.4.2 The Prior Predictive Distribution 79
 2.4.3 Using the Prior Predictive Distribution to Check your Model 81
 2.4.4 Improper Prior Predictive Distributions 83
 2.4.5 Prediction from Training Samples 84
 2.5 Posterior Prediction 87
 2.5.1 Posterior Model Checking 89
 2.5.2 Sampling the Predictive Distribution 90
 2.6 Posterior Odds and Model Choice 97
 2.6.1 Two Approximations to Bayes Factors 99
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7</td>
<td>Enlarging the Model</td>
<td>100</td>
</tr>
<tr>
<td>2.8</td>
<td>Summary</td>
<td>105</td>
</tr>
<tr>
<td>2.9</td>
<td>Exercises and Further Examples</td>
<td>106</td>
</tr>
<tr>
<td>2.10</td>
<td>Bibliographic Notes</td>
<td>110</td>
</tr>
<tr>
<td>3</td>
<td>Linear Regression Models</td>
<td>113</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>113</td>
</tr>
<tr>
<td>3.2</td>
<td>Economists and Regression Models</td>
<td>113</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Mean Independence</td>
<td>115</td>
</tr>
<tr>
<td>3.3</td>
<td>Linear Regression Models</td>
<td>115</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Independent, Normal, Homoscedastic Errors</td>
<td>117</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Vague Prior Beliefs about β and τ</td>
<td>120</td>
</tr>
<tr>
<td>3.3.3</td>
<td>The Two Marginals under a Vague Prior</td>
<td>121</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Highest Posterior Density Intervals and Regions</td>
<td>128</td>
</tr>
<tr>
<td>3.3.5</td>
<td>The Least Squares Line</td>
<td>131</td>
</tr>
<tr>
<td>3.3.6</td>
<td>Informative Prior Beliefs</td>
<td>134</td>
</tr>
<tr>
<td>3.3.7</td>
<td>Sampling the posterior density of β</td>
<td>135</td>
</tr>
<tr>
<td>3.3.8</td>
<td>An Approximate Joint Posterior Distribution</td>
<td>136</td>
</tr>
<tr>
<td>3.4</td>
<td>A Multinomial Approach to Linear Regression</td>
<td>143</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Comments on the Multinomial Approach</td>
<td>147</td>
</tr>
<tr>
<td>3.5</td>
<td>Checking and Extending the Normal Linear Model</td>
<td>150</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Checking</td>
<td>150</td>
</tr>
<tr>
<td>3.6</td>
<td>Extending the Normal Linear Model:</td>
<td>155</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Criticizing the Gasoline Model</td>
<td>155</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Generalizing the Error Distribution</td>
<td>161</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Model Choice</td>
<td>172</td>
</tr>
<tr>
<td>3.7</td>
<td>Conclusion and Summary of the Argument</td>
<td>174</td>
</tr>
<tr>
<td>3.8</td>
<td>Appendix: Analytical Results in the Normal Linear Model</td>
<td>176</td>
</tr>
<tr>
<td>3.9</td>
<td>Appendix: Simulating Dirichlet Variates</td>
<td>178</td>
</tr>
<tr>
<td>3.10</td>
<td>Appendix: Some Probability Distributions</td>
<td>179</td>
</tr>
<tr>
<td>3.11</td>
<td>Exercises and Complements</td>
<td>182</td>
</tr>
<tr>
<td>3.12</td>
<td>Bibliographic Notes</td>
<td>184</td>
</tr>
<tr>
<td>4</td>
<td>Bayesian Calculations</td>
<td>187</td>
</tr>
<tr>
<td>4.1</td>
<td>Normal Approximations</td>
<td>189</td>
</tr>
<tr>
<td>4.2</td>
<td>Exact Sampling in One Step</td>
<td>192</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Rejection Sampling</td>
<td>192</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Inverting the Distribution Function</td>
<td>193</td>
</tr>
<tr>
<td>4.3</td>
<td>Markov Chain Monte Carlo</td>
<td>196</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Markov Chains and Transition Kernels</td>
<td>196</td>
</tr>
<tr>
<td>4.3.2</td>
<td>The State Distribution, $p_t(x)$</td>
<td>198</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Stationary Distributions</td>
<td>198</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Finding the Stationary Distribution Given a Kernel</td>
<td>199</td>
</tr>
<tr>
<td>4.3.5</td>
<td>Finite Discrete Chains</td>
<td>202</td>
</tr>
<tr>
<td>4.3.6</td>
<td>More General Chains</td>
<td>204</td>
</tr>
<tr>
<td>4.3.7</td>
<td>Convergence</td>
<td>204</td>
</tr>
</tbody>
</table>
5 Nonlinear Regression Models

5.1 Estimation of Production Functions 231
 5.1.1 Criticisms of this Model ... 233

5.2 Binary Choice .. 235
 5.2.1 Probit Likelihoods .. 236
 5.2.2 Criticisms of the Probit Model 238
 5.2.3 Other Models for Binary Choice 238

5.3 Ordered Multinomial Choice ... 240
 5.3.1 Data Augmentation .. 242
 5.3.2 Parameters of Interest ... 242

5.4 Multinomial Choice ... 242

5.5 Tobit Models ... 243
 5.5.1 Censored Linear Models ... 243
 5.5.2 Censoring and Truncation: .. 244
 5.5.3 Selection Models ... 247

5.6 Count Data ... 249
 5.6.1 Unmeasured Heterogeneity in Nonlinear Regression 250
 5.6.2 Time Series of Counts ... 254

5.7 Duration Data ... 255
 5.7.1 Exponential Durations .. 257
 5.7.2 Weibull Durations ... 258
 5.7.3 Piecewise Constant Hazards .. 258
 5.7.4 Heterogeneous Duration Models 259
 5.7.5 Concluding Remarks ... 259

5.8 Exercises ... 260

5.9 Appendix to Chapter 5: Some Distributions 261
 5.9.1 The Lognormal Family ... 261
 5.9.2 Truncated Normal Distributions 261
 5.9.3 The Poisson Family .. 262
 5.9.4 The Heterogeneous Poisson or Negative Binomial Family 263
 5.9.5 The Weibull Family .. 264

5.10 Bibliographic Notes ... 266
6 Randomized, Controlled and Observational Data

6.1 Introduction ... 269
6.2 Designed Experiments 270
 6.2.1 Randomization 270
 6.2.2 Controlled Experimentation 271
 6.2.3 Randomization and Control in Economics 272
 6.2.4 Exogeneity and Endogeneity in Economics 273
6.3 Simpson’s Paradox .. 276
6.4 Conclusions .. 278
6.5 Appendix: Koopmans’ Views on Exogeneity 278
6.6 Bibliographic Notes 279

7 Models for Panel Data

7.1 Panel Data .. 281
7.2 How Do Panels Help? 282
7.3 Linear Models on Panel Data 285
 7.3.1 Likelihood ... 286
 7.3.2 A Uniform Prior on the Individual Effects 288
 7.3.3 Exact Sampling 292
 7.3.4 A Hierarchical Prior 292
 7.3.5 Bugs Program 294
 7.3.6 Shrinkage .. 295
7.4 Panel Counts ... 299
 7.4.1 A Uniform Prior on the Individual Effects 300
 7.4.2 A Gamma Prior for the Individual Effects 301
 7.4.3 Calculation in the Panel Count Model 302
7.5 Panel Duration Data 302
7.6 Panel Binary Data 304
 7.6.1 Parameters of Interest 304
 7.6.2 Choices of Prior 305
 7.6.3 Orthogonal Reparametrizations 307
 7.6.4 Implementation of the model 308
7.7 Concluding Remarks 311
7.8 Exercises ... 312
CONTENTS

313
7.9 Bibliographic Notes 313

8 Instrumental Variables 315
 8.1 Introduction 315
 8.2 Randomizers and Instruments 316
 8.3 Models and Instrumental Variables 316
 8.4 The Structure of a Recursive Equations Model 318
 8.4.1 Identification 319
 8.5 Inference in a Recursive System 320
 8.6 A Numerical Study of Inference with Instrumental Variables 326
 8.6.1 Generating data for a simulation study 327
 8.6.2 A BUGS model statement 327
 8.6.3 Simulation Results 328
 8.7 An Application of IV Methods to Wages and Education 332
 8.7.1 Is Education Endogenous? 338
 8.8 Simultaneous Equations 342
 8.8.1 Likelihood Identification 345
 8.9 Bibliographic Notes 345
 8.10 Instruments via Equilibrium 347

9 Some Time Series Models 349
 9.1 First Order Autoregression 349
 9.1.1 Likelihoods and Priors 353
 9.1.2 BUGS Implementations 355
 9.1.3 Prediction 356
 9.2 Extensions 358
 9.3 Stochastic Volatility 359
 9.4 A Second Order Autoregression 360
 9.5 Exercises 361
 9.6 Bibliographic Notes 361

Appendix 1: A Conversion Manual 363
 .0.1 The Frequentist Approach 363
 .0.2 The Bayesian Contrast 364

Appendix 2: Programming 369
 .0.3 S 369
 .0.4 WinBUGS 371
 .0.5 Formulating the Model and Inputting Data 371
 .0.6 Special Likelihoods and the Ones Trick 374
 .0.7 Running the Sampler 375
 .0.8 Computing References 376
Appendix 3: BUGS Code

.0.9 □ Heteroscedastic Regression □ □ □. 379
.0.10 □ Regression with Autocorrelated Errors □ □. 379
.0.11 □ CES production Function □ □ □ □. 380
.0.12 □ Probit Model □ □ □. 380
.0.13 □ Tobit Model □ □ □. 381
.0.14 □ Truncated Normal □ □ □. 381
.0.15 □ Ordered Probit □ □ □. 382
.0.16 □ Poisson Regression □ □ □. 382
.0.17 □ Heterogeneous Poisson Regression □ □. 382
.0.18 □ Right Censored Exponential Data (using the onestrick) □ 383
.0.19 □ Right Censored Weibull Data □ □ □. 383
.0.20 □ A Censored Heterogeneous Weibull Model □ □. 384
.0.21 □ A Simultaneous Equations Model □ □. 384
.0.22 □ A Panel Data Linear Model □ □. 385
.0.23 □ A Second O
.0.24 □ Stochastic Volatility □ □. 385
Introduction

This book is an introduction to the Bayesian approach to econometrics. It is written for students and researchers in applied economics. The book has developed out of teaching econometrics at Brown University where the typical member of the class is a graduate student, in his second year or higher. If he is an economics student he has taken in his first year a semester course on probability and random variables followed by a semester dealing with the elements of inference about linear models from a classical point of view. It is desirable that the reader is familiar with the laws of probability, the ideas of scalar and vector random variables and the notions of marginal, joint and conditional probability distributions and the simpler limit theorems. It could, therefore, be studied by upper level undergraduates, particularly in Europe and other countries with European style undergraduate programs. The mathematics used in the book rarely extends beyond introductory calculus and the rudiments of matrix algebra and I have tried to limit even this to situations where mathematical analysis clearly seems to give additional insight into a problem.

Some facility with computer software for doing statistical calculations would be an advantage because the book contains many examples and exercises that ask the reader to simulate data and calculate and plot the probability distributions that are at the heart of Bayesian inference. For simple cases these sums can be done in, for example, Matlab or one of the several variants of the S language. I supply code written in S for many of the examples. More complicated calculations rely on purpose built Bayesian software, specifically a package with the unlikely name of BUGS, and to make full use of this book it is necessary to obtain and learn to use this package.

Whether it useful to have previous knowledge of econometrics is debatable. On the one hand it is helpful to have some understanding of the method of least squares and of regression, and of fundamental econometric notions such endogeneity and structure. On the other hand this book deals exclusively with Bayesian econometrics and this is a radically different approach to our subject than that used in all existing introductory texts. Because Bayesian inference is different from what is customary it is, in my experience, extraordinarily difficult for ordinary mortals to change their way of thinking from the traditional way to the Bayesian way or vice versa. At least it is for me, and I notice that most of

\[947\text{ as of January 2003}\]
my students face the same problem. This means that someone whose training has been confined to the conventional approach may find this immersion to be a barrier to understanding the Bayesian method.

This book is about the Bayesian approach to inference; it is not a book about comparative methods and it contains little about traditional approaches which are covered in many textbooks. My aim has been to answer two rather simple questions. The first is “What is Bayesian Econometrics?” and the second is “How do I do it?” In the first chapter I explain that Bayesian Econometrics is nothing more than the systematic application of a single theorem, Bayes’ theorem. I also provide a brief answer to the second question, namely that to apply this theorem in an econometric investigation the best method, in general, is to use our new computer power to sample from the probability distributions that the theorem requires us to calculate. This is the meaning of the word ”Modern” in the book’s title. In 1989 the methods described here were scarcely known; in 1995 they would have been difficult for a beginner to apply; in 2003 application of these computer intensive methods is little, if any, more difficult than application of the methods traditionally used in applied econometrics. The remainder of the book essentially provides applications of Bayes’ theorem and illustrations of the method of calculation using mostly the simplest models, extensions to more complex structures will in many cases be fairly obvious.

These illustrations are not comprehensive, indeed, for an (imaginary) reader who gets the point of the opening chapters, they are unnecessary! Bayesian analysis of important economic models has has been going on since the 1960’s and significant progress has been made with a number of applications. I do not even deal with all those cases in which the method has been applied, but rather confine my examples to cases that I feel comfortable explaining. My hope is that just a few examples will be sufficient to enable the reader to tackle his own problem using what I shall later call The Bayesian Algorithm.

The book could be used as the basis for a one semester course at graduate or advanced undergraduate level. I have used it as such on several occasions with a teaching style that emphasizes calculations; the practicality of Bayesian methods; and demonstrates sampling algorithms including use of Markov Chain Monte Carlo procedures in class and requires students to solve problems numerically.

One way to read the book is to get the gist of the Bayesian method from chapters one and two, without necessarily going into the more detailed discussion in these chapters; then to read chapter three to get a broad understanding of Markov Chain Monte Carlo methods. The reader could then choose among the remaining chapters, which are illustrations of the use of Bayesian methods in particular areas of application, according to his or her interests.